Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit.

نویسندگان

  • Julia Brill
  • John R Huguenard
چکیده

Many principal neurons undergo an early developmental switch from GluR2-lacking to GluR2-containing synaptic glutamate receptors. We tested the generality and timing of the GluR2 switch in excitatory neurons of rat somatosensory cortex. Previous studies show that the switch occurs between postnatal day 14 (P14) and P16 in layer 5 pyramidal neurons. We show, using sensitivity to intracellular spermine, that a similar switch occurs between P12 and P14 in layer 2/3 pyramidal cells and between P7 and P8 in layer 4 stellate cells. The presence of GluR2-lacking receptors in layer 2/3 pyramidal cells before P12 was confirmed by demonstrating sensitivity to blockade by 1-naphthyl-acetyl-spermine and large single-channel conductances. GluR2 and the postsynaptic protein PSD95 show progressive colocalization in tissue from P10, P14, and P24 rats, mirroring electrophysiological developments. To distinguish whether changes in GluR2 expression or targeting underlie the switch, we characterized dendritic AMPA receptor responses using focal photolysis of caged glutamate. Contrary to synaptic responses, dendritic responses at all ages studied (P6-P40) were characteristic of GluR2-containing receptors. In addition, dendritically and synaptically evoked responses showed a corresponding decrease in NMDA/AMPA ratios in pyramidal cells, suggesting parallel mechanisms that regulate neuronal calcium levels. These data suggest that the GluR2 switch results from changes in AMPA receptor targeting during early postnatal development, and that rather than following the laminar sequence of cortical development, it proceeds sequentially from layer 4 to layer 2/3 and finally to layer 5b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines

Local recurrent excitatory circuits are ubiquitous in neocortex, yet little is known about their development or architecture. Here we introduce a quantitative technique for efficient single-cell resolution circuit mapping using 2-photon (2P) glutamate uncaging and analyze experience-dependent neonatal development of the layer 4 barrel cortex local excitatory circuit. We show that sensory experi...

متن کامل

A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons.

AMPA receptors mediate most of the fast excitatory neurotransmission in the brain, and those lacking the glutamate receptor 2 (GluR2) subunit are Ca(2+)-permeable and expressed in cortical structures primarily by inhibitory interneurons. Here we report that synaptic AMPA receptors of excitatory layer 5 pyramidal neurons in the rat neocortex are deficient in GluR2 in early development, approxima...

متن کامل

Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons.

Postsynaptic molecules with PDZ domains (PDZ proteins) interact with various glutamate receptors and regulate their subcellular trafficking and stability. In rat neocortical development, the protein expression of AMPA-type glutamate receptor GluR1 lagged behind its mRNA expression and rather paralleled an increase in PDZ protein levels. One of the neurotrophins, brain-derived neurotrophic facto...

متن کامل

SynDIG1: An Activity-Regulated, AMPA- Receptor-Interacting Transmembrane Protein that Regulates Excitatory Synapse Development

During development of the central nervous system, precise synaptic connections between presynaptic and postsynaptic neurons are formed. While significant progress has been made in our understanding of AMPA receptor trafficking during synaptic plasticity, less is known about the molecules that recruit AMPA receptors to nascent synapses during synaptogenesis. Here we identify a type II transmembr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 51  شماره 

صفحات  -

تاریخ انتشار 2008